Segmentation of Subspaces in Sequential Data
نویسندگان
چکیده
We propose Ordered Subspace Clustering (OSC) to segment data drawn from a sequentially ordered union of subspaces. Similar to Sparse Subspace Clustering (SSC) we formulate the problem as one of finding a sparse representation but include an additional penalty term to take care of sequential data. We test our method on data drawn from infrared hyper spectral, video and motion capture data. Experiments show that our method, OSC, outperforms the state of the art methods: Spatial Subspace Clustering (SpatSC), Low-Rank Representation (LRR) and SSC.
منابع مشابه
Robust and Efficient Subspace Segmentation via Least Squares Regression
This paper studies the subspace segmentation problem which aims to segment data drawn from a union of multiple linear subspaces. Recent works by using sparse representation, low rank representation and their extensions attract much attention. If the subspaces from which the data drawn are independent or orthogonal, they are able to obtain a block diagonal affinity matrix, which usually leads to...
متن کاملBinary Reduced Row Echelon Form Approach for Subspace Segmentation
This paper introduces a subspace segmentation and data clustering method for a set of data drawn from a union of subspaces. The proposed method works perfectly in absence of noise, i.e., it can find the number of subspaces, their dimensions, and an orthonormal basis for each subspace. The effect of noise on this approach depends on the noise level and relative positions of subspaces. We provide...
متن کاملEfficient Subspace Segmentation via Quadratic Programming
We explore in this paper efficient algorithmic solutions to robust subspace segmentation. We propose the SSQP, namely Subspace Segmentation via Quadratic Programming, to partition data drawn from multiple subspaces into multiple clusters. The basic idea of SSQP is to express each datum as the linear combination of other data regularized by an overall term targeting zero reconstruction coefficie...
متن کاملSubspace Clustering with Applications to Dynamical Vision ( CS 229 Final Project )
Data that arises from engineering applications often contains some type of low dimensional structure that enables intelligent representation and processing. This leads to a very challenging problem: discovering compact representations of high-dimensional data. A very common approach to address this problem is modeling data as a mixture of multiple linear (or affine) subspaces. Given a set of da...
متن کاملTechnical Report 2004-01-CIRL-CS-JHU Image Segmentation Through Energy Minimization Based Subspace Fusion
In this paper we present an image segmentation technique that fuses contributions from multiple feature subspaces using an energy minimization approach. For each subspace, we compute a per-pixel quality measure and perform a partitioning through the standard normalized cut algorithm [12]. To fuse the subspaces into a final segmentation, we compute a subspace label for every pixel. The labeling ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1504.04090 شماره
صفحات -
تاریخ انتشار 2015